The aging brain: accumulation of DNA damage or neuron loss?
نویسندگان
چکیده
Age-related molecular and cellular alterations in the central nervous system are known to show selectivity for certain cell types and brain regions. Among them age-related accumulation of nuclear (n) DNA damage can lead to irreversible loss of genetic information content. In the present study on the aging mouse brain, we observed a substantial increase in the amount of nDNA single-strand breaks in hippocampal pyramidal and granule cells as well as in cerebellar granule cells but not in cerebellar Purkinje cells. The reverse pattern was found for age-related reductions in total numbers of neurons. Only the total number of cerebellar Purkinje cells was significantly reduced during aging whereas the total numbers of hippocampal pyramidal and granule cells as well as of cerebellar granule cells were not. This formerly unknown inverse relation between age-related accumulation of nDNA damage and age-related loss of neurons may reflect a fundamental process of aging in the central nervous system.
منابع مشابه
Pericytes Control Key Neurovascular Functions and Neuronal Phenotype in the Adult Brain and during Brain Aging
Pericytes play a key role in the development of cerebral microcirculation. The exact role of pericytes in the neurovascular unit in the adult brain and during brain aging remains, however, elusive. Using adult viable pericyte-deficient mice, we show that pericyte loss leads to brain vascular damage by two parallel pathways: (1) reduction in brain microcirculation causing diminished brain capill...
متن کاملتئوریهای بیوشیمیایی و ژنتیکی فرایند پیری
Aging is the outcome of the progressive accumulation of different alterations in the body which accompanied with gradual decrease of the efficiencies of normal physiological functions and the capacity to maintain homeostasis that lead to the increase in disease probability and the death of people. The researchers have done different experiments especially on animal models for the perception of ...
متن کاملDopamine-Synthesizing Neurons: An Overview of Their Development and Application for Cell Therapy
Cell-gene therapy is a dynamic constituent of novel medical biotechnology. Neurodegenerative disordersin which damage to or demise of specific brain cell types plays central role, are clear examples of diseasecandidate for cell replacement therapy. Dopaminergic (DAergic) neurons biosynthesize dopamine, a vitalneurotransmitter in the central nervous system. Due to the involveme...
متن کاملUbiquitin Accumulation on Disease Associated Protein Aggregates Is Correlated with Nuclear Ubiquitin Depletion, Histone De-Ubiquitination and Impaired DNA Damage Response
Deposition of ubiquitin conjugates on inclusion bodies composed of protein aggregates is a definitive cytopathological hallmark of neurodegenerative diseases. We show that accumulation of ubiquitin on polyQ IB, associated with Huntington's disease, is correlated with extensive depletion of nuclear ubiquitin and histone de-ubiquitination. Histone ubiquitination plays major roles in chromatin reg...
متن کاملEvaluation of Oxidative Stress and DNA Damage Indicators Following A Long Period of Resistance Training in Sedentary Older Men
Background and Aim: Excessive production of free radicals and the accumulation of oxidative damages play an important role in accelerating the aging process. However, one of the ways to fight against aging and related diseases is through physical activity. The aim of the present study was to investigate the effect of 12 weeks of resistance training on oxidative stress indicators (8-iso-prostagl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurobiology of aging
دوره 28 1 شماره
صفحات -
تاریخ انتشار 2007